Approfondimento del moto del peso lanciato

Modificare il foglio di Excel *Moto del peso lanciato in presenza della resistenza dell'aria*, in modo da compilare la tabella della posizione rispetto al tempo, di un corpo lanciato da una determinata altezza iniziale rispetto al sistema di riferimento, disegnarne la traiettoria e i grafici delle velocità orizzontale e verticale.

Il punto di partenza del peso lanciato si trova all'altezza h_q rispetto all'origine degli assi.

Aperto il foglio di calcolo con il nome "LancioPesoConResistenzaAria" relativo all'Esempio 6, modifichiamo il titolo nella casella di testo: "MOTO DEL PESO LANCIATO DA UNA DATA ALTEZZA IN PRESENZA DELLA RESISTENZA DELL'ARIA".

Scriviamo nella cella A12 l'etichetta: "altezza iniziale h_{o} ", inseriamo nella cella C12 il numero 30 come valore di esempio e scriviamo nella cella D12 l'unità di misura "m", mentre lasciamo invariate le etichette e i valori degli altri dati, compresi quelli relativi alla tabella dei calcoli iniziali.

1	A B	C	D	E	F	G	H	1	J	
1				VI.						
2	MOTO	OFI DES	O LANCIA	TO D	Δ ΠΝΙΔ	ΠΔΤΔ	Δ1 TF77Δ	IN		
3										
PRESENZA DELLA RESISTENZA DELL'ARIA										
5										
5	DATI			Calcoli iniziali						
7	massa del peso:	4,00	kg		angolo di lancio in radianti (α):		0,524	rad		
	ooo di gravità gi	9.81	m/s ²	componente orizzontale v _{ox} :			10,392	m/s		
8	acc. di gravità g:	2,01	202002000			ito officeoffi	Tarie TOX	20-201 Bulletin 17-10		
8 9	velocità iniziale v ₀ :	12,00	(3)			te vertical		6,000	m/s	
200			m/s		componen		e v _{oy} :	6,000 0,01	1000000000	
9	velocità iniziale v _o :	12,00	m/s		componen	ite verticale	e v _{oy} :	500.500.000.000	1000	

Assegniamo alla cella C12 il nome "h0".

Salviamo il foglio di calcolo con il nome "LancioPesoConAltezza".

Modifichiamo nella cella C15 la formula dell'ordinata iniziale della posizione del peso:

C15: =h0

Lasciamo invariate le formule nel resto del foglio.

4	А	В	C	D	E
13				Tabella	a posizione, velocità, acc
14	t (s)	x (m)	y (m)	v _x (m/s)	v _y (m/s)
15	0	0	=h0	=v0x	=v0y
16	=A15+dt	=B15+D15*dt	=C15+E15*dt	=D15+H15*dt	=E15+I15*dt

Otteniamo così i valori delle grandezze che descrivono il moto del peso lanciato da una data altezza e soggetto alla resistenza dell'aria.

Notiamo che dopo la riga 363 i valori delle *y* diventano negativi, da qui deduciamo che la posizione dove il peso tocca terra si trova a una distanza dalla verticale del punto di lancio tra 25,772 m e 25,826 m.

	Α	В	С	D	E	F	G	Н	1	J	
1											
2		иото г	DEL PES	O LANC	CIATO D	A UNA	DATA A	ALTEZZA	IN		
3			DECEN	74 DELI	A DECI	STENZA	DELL'A	DIA			
4		F	KESEIN	ZA DELI	LA RESI	SICINZA	DELL A	INIA			
5					-					_	
6		DA	TI			Calcoli iniziali					
7	massa del peso:		4,00	-		angolo di lancio in radianti (α):		0,524	rad		
8	acc. di gravità g:		9,81	m/s ²		componente orizzontale v _{0x} :		10,392	m/s		
9	velocità iniziale v ₀ :		12,00	m/s		componente verticale v _{0y} :		6,000	m/s		
10	angolo di lancio α:		30	0		intervallo di tempo Δt:		0,01	s		
11	coeff. attrito k:		0,1								
12	altezza iniziale h ₀ :		30,00	m							
13	Tabella posizione, velocità, accelerazione										
14	t (s)	x (m)	y (m)	$v_x (m/s)$	v _y (m/s)	F _x (N)	F _y (N)	$a_x (m/s^2)$	$a_y (m/s^2)$		
15	0	0	30	10,392	6,000	-10,800	-42,840	-2,700	-10,710		
16	0,01	0,104	30,060	10,365	5,893	-10,744	-42,713	-2,686	-10,678		
17	0,02	0,208	30,119	10,338	5,786	-10,688	-42,588	-2,672	-10,647		
18	0,03	0,311	30,177	10,312	5,680	-10,633	-42,466	-2,658	-10,616		
361	3,46	25,662	0,508	5,468	-17,637	-2,990	-8,135	-0,747	-2,034		
362	3,47	25,717	0,332	5,460	-17,657	-2,982	-8,063	-0,745	-2,016		
363	3,48	25,772	0,155	5,453	-17,677	-2,973	-7,992	-0,743	-1,998		
364	3,49	25,826	-0,022	5,446	-17,697	-2,965	-7,922	-0,741	-1,980		
365	3,5	25,880	-0,199	5,438	-17,717	-2,957	-7,851	-0,739	-1,963		

Completiamo lo studio del moto preparando i grafici:

Grafico *Traiettoria*, che riporta le posizioni occupate dal peso durante il volo, le cui coordinate si trovano nelle celle da B14 a C363.

Grafico *Componente orizzontale della velocità*, che mostra come varia la velocità orizzontale in funzione del tempo; i dati si trovano nelle celle da A14 a A363 per l'asse orizzontale dei tempi, e nelle celle da D14 a D363 per l'asse verticale della componente orizzontale della velocità. Grafico *Componente verticale della velocità*, che mostra come varia la velocità verticale in funzione del tempo, i cui dati si trovano nelle celle da A14 a A363 per il tempo, e da E14 a E363 per la componente della velocità verticale.

Anche in questo caso effettuiamo l'analisi del modello modificando il valore di un solo dato iniziale per volta, e controllando come cambia l'ascissa di punto con ordinata nulla. Possiamo considerare come altezza iniziale $h_0 = 2,20$ m quella corrispondente all'altezza media della mano dell'atleta che lancia il peso, approssimando così in modo migliore alla realtà i risultati

ottenuti.